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The use of Lik' ert items on questionnaires is very popular in sociological and
psychological measurement. In the typical analysis of data from such a questionnaire,
frequencies of endorsements to points on the scale are tabulated and percentages are
computed separately for each item and point of the scale. These descriptive statistics are
inconvenient when we try to compare and interpret subjects' responses as measures on the
construct we are assessing. Comparisons among items become more cumbersome as the
number of items or the number of points on the scale is increased. The points on the scale
are frequently assumed to constitute an equal interval scale and subjects' scores are treated as
constituting a continuous variable. This assumption is hard to justify if the frequency
distribution of scores is highly skewed. Item response theory (IRT) models have provided a
solution to problems such as these in other contexts.

Item response theory models applicable to scales made up of dichotomously-scored items
measuring one proficiency dimension have been developed and are now in widespread use.
The distinct feature of IRT models as compared to other statistical models for categorical
variables, such as logistic and log-linear models, is the inclusion of latent traits as variables.
The model that is the subject of this paper is based on two extensions of the basic IRT
model. Models that can incorporate polytomously-scored items have been proposed and used
by several researchers (Andrich, 1978, 1982, 1988; Bock, 1972; Masters, 1982; Muraki,
1990, 1992a; Samejima, 1969, 1972). Bock and Aitkin (1981) extended IRT models for
dichotomously-scored items to the multidimensional case (several proficiency dimensions)
and developed an EM algorithm (Dempster, Laird, & Rubin, 1977) to estimate the
parameters of the model based on the normal ogive. McKinley & Reckase (1983) proposed a
logistic-distribution-based multidimensional model. In this paper a multidimensional IRT
model for polytomously-scored items, based on Samejima's graded response model and
using the normal ogive, is developed, and an EM algorithm that may be used to estimate the
parameters of the model, is also discussed.

Development of the Model

Bock, Gibbons, and Muraki (1988) assume that the interaction ofperson i and item j
results in a response process variable, yip that is a linear combination of M latent traits.
Using vector notation in which g is an M-dimensional vector of latent traits (common factors)
and rg a vector of factor loadings:

fill 2/
(el,,

82i, , emi)

- (%11 a12, aim)

we may write this combination as
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Yaj = + eil

ajleii ai2021 + +ailidemi eij
[1]

where ei; is an unobserved random variable (a unique factor in factor analytic terms) which is
assumed to be distributed N(0, ce). Conventionally in factor analysis it is assumed that the
distribution of Q is N(Q, I) and that y; is distributed with mean 0 and variance I. Hence the
unique variance is

2
Cr = 1. E ajs = 1 [2]

Classical factor analysis for continuous variables is based on the assumption that the
response process is directly observable. In contrast, the factor analytic model for categorical
variables is based on the assumption that the response process variable, h, is latent and
realized into a vector of polytomous item responses for 7 items,

211 = (w11, Wj2, Wia)

according to the psychological mechanism

Wij =k if
V. = "c°"
(k = 1, 2, . . . , IC)

Yi. yij < Yk

where is a threshold parameter associated with category k of a K-category Likert-type
item, j. The process generates a categorical response of k for person i to item j when y
equals or exceeds the threshold, but does not exceed the threshold .yjc. Assuming a
normal ogive model the probability of categorical response k by person i to item j given
his/her M-dimensional latent trait is expressed as

dy [3]
yik

1 ( J. 1P (Wil = k I = f exp -2
a j

Introducing a change of variable, we may re-write the item response model in [3] by defining
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Following Bock, Gibbons, and Muraki (1988) we define slope and item-category
parameters:

aim
aim
sui

bjk = j

(k = 1 , 2, , K-1)
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and define the following functions:

Zjk = jQ + bjk
[12]

(k = 1, 2, . . . . K-1)

k
13;i: (ft) = E Pic (e) [13]

Pjo = 0 [14]

P;tic = 1. [15]

(1) ( t) = 1 exp
t2)

[16]
2

then the model in [3] may be written as

Pik(A) = Pik (Q) Pi, k-i

which can be written as

[17]

Zjk(Q)

Pik (e) = f )(t) dt f (t) dt
[18]

110

(k = 1, 2, . . . , K)

For k= 1 the last term is zero and fol k=K the first term is the definite integral ofa
probability density function from negative infinity to infinity and therefore equals one.
Hence we may write these two cases as

Pji(11) = P.;.1(11)
Pik& = 1.0 P;, ic-i (a)

4
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Equation 17 is referred to as the operating characteristic of the graded response model by
Samejima (1972).

Once we obtain the estimates of slope and item-category parameters, we can compute the
corresponding factor loadings and threshold parameters from relationships derived from [2],
[10], and [11], as follows:

and

where

".1m
cj

yik = -

t2 = 1+F fin = 1 +.dis1

Interpretation of Parameters in Multidimensional IRT Models

[20]

[21]

[22]

Reckase (1985, 1986) developed "multidimensional" parameters that serve as an aid in
understanding the nature of items generated according to the multidimensional logistic model
and Carlson (1987) further elaborated on their meaning. Here we apply similar ideas to
items generated by multidimensional models for polytomously-scored items and, in
particular, the normal ogive model in [17] and [18].

Following Reckase's (1985, 1986) definition, the multidimensional discrimination of a
polytomously-scored item can be defined as

..2 `j% ajm = z
3

and the multidimensional item-category parameter can be defined as

5
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jk=
Tlj

[24]

Reckase (1985) found the direction of steepest slope of the response surface can expressed in
terms of angles with the latent trait axes as

a.,
cos co3 m = = A.03 [25]

The slope in the direction specified by angles c is at its maximum when the item response
surface (IRS) of Pj,+(0) crosses the .5 probability hyperplane.

The item-category parameter of the cumulative probability in [13] is the proficiency
value at the point of .5 probability of the kth or below kth categorical response where

E aim% = -bik
m=3.

[26]

If we denote a particular dimension as m' (1 m' M), we obtain the following equation
because of the symmetric relation:

Om/
ailnem aim/

[27]

Equations [26] and [27] can be solved from the points in the proficiency dimensions locating
the item-category parameter:

0m' = -a b
3k

3 2j
aid

j P"
= P kC 0 S

From [25] and [28], we obtain the following equations:
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and

ajm = TliCOSCOim [29]

= Pitcos [30]

Since the direction cosine is cos(coj.) for both the multidimensional discrimination 'b and the
multidimensional difficulty 4, they must reside along the same axis. The slope parameter
ap is the mth coordinate of the point where the slope of IRS is the steepest. The value TA331
indicates the mth coordinate of the point on the line. In other words, it is the projection of
13, onto the mth 0 dimension. Thus, the parameter, Tim" can be referred to the mth
component of the multidimensional item-category parameter, 4.

The concepts discussed above can be best explained in the context of two dimensions.
Figures 1 and 2 show a two-dimensional response surface and contour plot, respectively, for
P3,10) in [13] with a-parameters of .8 and .6 and bk-parameter of .5. Note that the locus of
all points for which 01=0. defines a line in the response surface (Figure 1) which is a
unidimensional item characteristic curve above the 02 axis. Similarly, for 02=0. there is a
two-parameter unidimensional item characteristic curve over the 01 axis. The i for the
example item j in the figures is therefore equal to 1.0 and the (3.* is -0.5. The direction
cosines of the line of maximum slope in reference to 01 and 02 are .8 and .6, respectively.
Since these 0 axes are orthogonal, coewil + cos2cui2=1.

********************************************
Insert Figures 1 and 2 about here

********************************************

Consider the geometry in Figure 3. The 01 and 02 are two orthogonal axes representing
the two dimensions underlying item j. The linear combination in [12] indicates the
combination of the two Os that the item can be considered to be measuring:

12/..(1 = aj101 + aj 202

The equation of the line defining the direction of measurement, as is shown in Figure 3, can
be written as

_,t.
el2 aJI
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The two a parameters are the lengths of two sides (ail = OC and aj2 = OA) of a right
triangle whose hypotenuse (OB) is equal to Reckase's multidimensional discrimination
parameter, th. The angle BOC is wo and the angle AOB is its orthogonal complement, COp.

The two r parameters are the lengths of two sides (Tin = OF and T02 = OD) of a right angle
whose hypotenuse (OE) is equal to the multidimensional difficulty parameter (4). The
multidimensional item response surface of the cumulative probability is a two-dimensional
surface above the 01-02 plane (Figure 1), and a slice through that surface along the line of
measurement of the item is a unidimensional item characteristic curve foran item with
discrimination parameter equal to th and item-category parameter equal W 13i, (Carlson,
1987).

**********W*************************************
Insert Figure 3 about here

************************************************

By using the multidimensional parameters defined above, the model in [12] can be
rewritten as

Zik(e) = aj1k+ai202 + . . + aitAN+ bit

= (coscapel + cosoi202 ... +coscoinem-Pjk)j
nj (xi1e1 +ki2e2 + +kodam- Pik)

= (0;-Pik)

[31]

The unidimensional latent trait O is a composite of M dimensional latent traits 6m (m=1, 2,
M). Reckase pointed out that an item, although being scaled in a multidimensional

context, can be considered to be measuring along a single dimension. That dimension is a
linear combination of the uncorrelated theta dimensions. The test containing the item may,
however, be multidimensional if it consists of items that measure along different directions in
the theta space. Since it is assumed that the distribution of f2 is N(Q,I) and the sum of
squared direction cosines in the orthogonal space is 1., the variance of 0 is also 1.

The model can be also expressed as a linear combination of factor loadings and
thresholds:

Zjk(Q) = (CC JAI- a .1202 . . . +CAC yik)

_ Ots -Ifjk
aj
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Unlike the composite latent trait O in [31], the variance of a linear combination of the
weighted individual Om, er, in [32] is not 1. The variance of this composite of latent traits is
called the communality, hi2. Since

and

Zjk(Q)

2h
Z " )Jk der

1+11j,

the communality is expressed by the parameters in [31] as

11

1 + 113

The multidimensional discrimination and direction cosines are expressed by the
parameters in the model [32] as

and

h _121

a jni
Airn j

[33]

[34]

[35]

[36]

[37]

[38]

As seen in [10] and [37], the multidimensional discrimination can be interpreted in the same
way as the conversion of factor loadings to the slope parameters. Furthermore, the direction
cosine can be also computed as the ratio of the factor loadings to the square root of the
communality.
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To summarize, the multidimensional parameters defined for the McKinley-Reckase
M2PL model (McKinley & Reckase, 1983; Reckase, 1985) can be adopted for the
multidimensional graded response model in [18] because the cumulative probability of each
categorical response of kth or below kth, PA+(t), is essentially a dichotomous item response
model and the logistic function is only an approximate form of the normal ()give function.
The difference is that the multidimensional polytomous item response model yields a set of
K-1 IRSs of 11,0, *(12) rather than one such surface for the dichotomous item response model.
These IRSs are parallel along the line defined by a set of direction cosines, X, m=1,2, ...,
M. The probability of the specific middle category k, PAW is defined by subtracting PjA.
+(f) from 4+(Q). Since these IRSs of cumulative probabilities are parallel, the

multidimensional parameters are still meaningful even for specific middle categories.

Bock, Gibbons, and Muraki (1988) established the relationships between the parameters
of the factor analysis model and the parameters of the item response model. In this paper,
we have established the relationships between the factor loadings and multidimensional
parameters like those in Reckase's model. The multidimensional parameters can provide
useful interpretations of parameters of the multidimensional item response models. These
parameters can be computed directly from the factor loadings.

Figures 4 through 7 show the IRSs of polytomously-scored three-category item 1 with
Parameters: ail=1.0, a12 =1.5, b11=-0.8, and b12=1.2. In Figure 4, the IRS of PAO) is
plotted. This is the same probability as P114V, as given in [19]. In Figure 5, the IRS of
the second cumulative probability P12+(.0 is plotted. These two IRSs are parallel to each
other. The model probability of the second categorical response, PIA= P12+0)-Pit+0.), is
computed and plotted in Figure 6. Finally, the model probability of the third categorical
response, Pia= 1.0 P12+(Qb), is plotted in Figure 7. If the width of the item-category
parameters is shortened, the probability of the middle categorical response is uniformly
decreased. Consequently, the IRS becomes flatter. In Figure 8, the IRS of the middle
categorical response of item 2 with the same parameter values as item 1 except that b21=0.8
is shown. Since the width of the item-category parameters becomes narrower given the same
slope parameters, the IRS is pushed to downward. We can expect the observed response
frequencies of the second category to be smaller for item 2 than for item 1. The shape of
the IRS does not change if we rotate the original IRS. In Figure 9, the IRS of the second
categorical response, P32(0), with slope parameters a31=1.5 and a32=1.0 is plotted.

********************************************

Insert Figures 4, 5, 6, and 7 here
********************************************
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Parameter Estimation

Let IJo, represent an element in the matrix of the observed response pattern i. 110,=1 if
item j is rated by the ith respondent in the kth category of a Likert scale, otherwise Uijc=0.
By the principle of local independence (Birnbaum, 1968) the conditional probability of a
response pattern i, given 0, for K response categories and J items, as denoted by a response
matrix (14), is the joint probability:

47 K

Pit (Ujk) ifn = rill [pik(f»]Ulik
L".01

[39]

For examinees randomly sampled from a population with a multivariate normal distribution
of the latent trait variable, OW, the marginal probability of the observed response pattern i is

Pi[(Ujj,)] = f Pit (U jk) Ifi] 41(a) [40]

If an examinee responds to J items with K categories, his/her response pattern i can then
be assigned to one of IV mutually exclusive patterns. Let ri represent the number of
examinees observed in such a pattern i, and let N be the total number of examinees sampled
from the population. Then T.; is multinominally distributed with parameters N and Pi(Uic).
This probability can be interpreted as the likelihood function of the parameters and bA:

L
A-7

N. [Pi[ (Uik)]] rl
KJ

ri!
iii

Taking the natural logarithm of Equation 41 yields

KJ
lnL = 1nN! -E lnri ! +E ri ln Pi [ Uik)

iii jai

[41]

[42]

Bock and Aitkin (1981) applied the EM algorithm (Dempster et al., 1977) to estimate the
parameters for each item individually, and then repeated the iteration process over J items
until the estimates of all the items became stable to the required number of decimal places.
This is in contrast to the Fisher-scoring procedure of Bock and Lieberman (1970). The qth
cycle of the iterative process can be expressed as

11
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[43]

for each item j. The vector of estimates u represents the model parameters. The orders of
parameter vector 2 and gradient vector / are both M+K-3, and the order of information
matrix V is (M+K-3) x (M+K-3). The information matrix is the negative expectation of the
matrix of second derivatives. When the number of response categories is K, only K-1 item
category parameters can be specified. In addition, two extreme ends of parameter values
need to be fixed to estimate slopes. Furthermore, because the covariance between any
categories that differ by more than two points is simply 0, the partitioned information matrix
for the category parameter estimation becomes a tridiagonal symmetric matrix (Muraki,
1990).

The likelihood equations for & and BA can be derived from the first derivatives of
Equation 42 with respect to each parameter, and respectively set to 0.

With respect to ajm, the likelihood in [42] can be differentiated as

a [Pik (ii) ] ujjk (1/) GI/ [44]alnL _ /*pi [ (ujk) E aa .31 [Pik (a) ] Ujjkaaia, fa' [ Wik) k.1

Now let the observed score patterns be indexed by 1=1,2,..., S, where S min(N,r). If the
number of examinees with response pattern 1 is denoted by 4, then

E r2 = N

The first derivative of the likelihood function in [44] can be approximated by using the
Gauss- Hermite quadrature, such that

alnL
aaji,

S Fit F2 F1

zEE...EE1.1 fel fel fel

where

r117 (Z) A (Xf1) A (Xt2) ...A (Xfm)

131

124

arpjk(z) ulik 1

[45]

Jc.1 aajm [Pjk (s) ] 71A

[46]



and

Fit Fa Fa .7 x
132 = E ...E E 1111 [Pik (I) rkikA (1/4) A (Xf2) ...A (X.fit) [47]

fel. fel 4.1 k.,1

J IC

L1(21) = [Pik (Z)
3.1 kv.1

[48]

In Equation 46, A(Xf) is the weight of the Gauss- Hermite quadrature, and Xf is the
quadrature point (Stroud & Secrest, 1966). The quadrature weight A(Xf) is approximately
the standard normal probability density at the point Xf for each dimension. Because ULj, can
take only two possible values, 1 and 0, the element of the gradient vector I. can be written as

where

FN F2 Ft K Fjkflf2-4 aPjk (X)tai ...E EE
.

m fel f2 -i fl -1 P3k(Z) aa3m

.r (20 A (Xfi) A (Xf2) ...A (X4) Uijk
Tikflf2-4 = E

1=1 131

[49]

[SO]

and Fikil.f2_4( is called the provisional expected frequency of the kth categorical response

of item j at the fth quadrature point.

The item category parameter, bA, is contained in both 133,(01 and PJA.,_1(0) as shown in
[18]. The first derivative of Equation 39 with respect to b given by

apittujo i.e] u ui k+3. aP*.k(fi)Pi[ (rift) "- "a bi k Pik (0.) Pi A:4a (fi) abik

Therefore, the element of the gradient vector it, is numerically computed as

FM F2 F1 Fikfl r2.. fit ,k41..fif2-fm Pa jk (z)]tbik fel f2=1 fel..E E [ k(Z)
_ Pj,k+1(z) abik
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The elements of the information matrix are given by

Va
Fit P2 F1

1 31:)Jk(20 aPJ,k(20E E E z)
ffire k.1 jk,( aajill

[53]

aP;j: (Al 2 [54
Fif F F1

1 4. 1f [ abik
...E

P ik(z)vb,kbik f ]
e. 2

Fm F2 a k (X) ap;,k+1(21)1 [55]V,.. -E E Nififr-fkr p (X) abik abj,k+1J,k+1fe1 4.1 4.1

and, when I k-k' I z 2,

= 0

and finally

[56]

Fm P2 F1

Vaimb E .-.E E N [ jk1 -aPjk(Al
1 aPi,k+1(211 aP;k(z)

ifif2-41 p (z) abjkfel 4-1 4.1 aajm Pj.k+i (X) aafin

[57]

The algorithm presented above was implemented in POLYFACT (Muraki, 1993). The
POLYFACT is a hybrid computer program of PARSCALE (Muraki & Bock, 1993) and
TESTFACT (Wilson, Wood, & Gibbons, 1984). The program computes the factor loadings
by the principal factor analysis based on the product moment correlation matrix, treating item
responses as a continuous variable. Because the factors of the principal factor analysis are
orthogonal, their loadings are suitable for the full-information solution after conversion to
slopes. Slope estimates based on the full-information method are then converted again into
factor loadings. The resulting full-information factor loadings are then rotated orthogonally
to the varimax criterion (Kaiser, 1958) and, with the varimax solution as target, rotated
obliquely by the promax method (Hendrickson & White, 1964).

Simulation Study

The polytomous item responses of six items and 5000 respondents were generated by the
RESGEN (Muraki, 1992b) computer program. All six items have three categorical

14
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responses. The values of the original parameters are presented in Table 1. The values of
a=1.2 and a=0.0 correspond to a=0.768 and a =0.0, respect.4ely. The communality is the
same for all six items (h?=0.590, j =1,2,...,6).

** *** **** *** *********** ******* ******** *** ** *

Insert Table 1 here
********************************************

The three-dimensional solutions were obtained. Five quadrature points for each
dimension were used for numerical integration. Therefore, 53 total points were used for
integration. The precision for convergence was set 0.001. Nineteen EM cycles were needed
to reach convergence. The estimated slope parameters were converted to factor loadings,
and the communality for each item was computed. The factor loadings were then rotated
with a varimax criteria and they are presented in Table 2. The slope parameters were
recovered from the varimax factor loading, and they are shown in Table 3. The item-
category parameters are also presented in Table 3. Reckase's multidimensional
discrimination parameter (MDP) and direction cosines were computed based on the varimax
factor loadings and are shown in Table 4.

* ********* * * * * ** * ***** * ***** ** ** * *** ** * ** * * *

Insert Tables 2, 3, and 4 here
********************************************

All of the slope parameters were underestimated, and consequently the varimax factor
loadings are lower than the original ones. The item-category parameters are also
underestimated. The underestimation of these parameters may be eased by increasing the
number of quadrature points. We are currently investigating this possibility. Nevertheless,
the factor structure of the original simulated data is recovered in the estimated parameters.
The process of conversion from the slope parameters into factor loadings and the rotation of
the factor loadings is an efficient way to study the results of the analysis. We can then
recover the slope parameters and compute the multidimensional discrimination parameters
and the direction cosines.

For further research, we are planning the analysis of real data sets of polytomous item
responses. The test of chi-square fit is essential to investigation of the appropriateness of the
multidimensional item response models. The interpretation of the multidimensional
parameters in terms of classical factor analysis is also needed. Since increasing the
dimensionality requires an exponential increment in computational time, we need to
investigate adjusting the number of quadrature points to economize the estimation process.
In this research, we attempted to estimate the parameters of the multidimensional graded
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response model. We succeeded in this basic task. This is the first step in expanding the
application of the factor analysis to qualitative data.
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Table 1

Original Model Parameters

Item al

Slope Parameter

a2 a3

Item-Category Parameter

b1 b2

1 1.2 0.0 0.0 -1.8 0.8

2 1.2 0.0 0.0 -0.8 1.8

3 0.0 1.2 0.0 -1.8 0.8

4 0.0 1.2 0.0 -0.8 1.8

5 0.0 0.0 1.2 -1.8 0.8

0.0 0.0 1.2 -0.8 1.8
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Table 2

Varimax Factor Loadings and Communality

Item

Factor Loadings

al a2 a3 h2

Communality

h

1 0.709 0.002 -0.007 0.503 0.709

2 0.705 -0.002 -0.014 0.497 0.705

3 0.006 0.699 0.021 0.489 0.699

4 -0.006 0.698 0.003 0.487 0.698

5 0.012 -0.017 -0.723 0.523 0.723

6 0.010 -0.009 -0.729 0.532 0.729



Table 3

Estimated Model Parameters

Item

Slope Parameter

al a2 a3

Item-Category Parameter

b1 b2

1.005 0.003 -0.010 -1.204 0.492

2 0.994 -0.003 -0.020 -0.546 1.211

3 0.008 0.978 0.029 -1.121 0.505

4 -0.008 0.975 0.004 -0.522 1.161

5 0.017 -0.025 -1.047 -1.149 0.549

6 0.015 -0.013 -1.065 -0.507 1.191



Table 4

Reckase's Multidimensional Parameters

Item

MDP

71

Direction Cosines

X a2 X

1 1.005 1.000 0.003 -0.010

2 0.994 1.000 -0.003 -0.020

3 0.978 0.009 1.000 0.030

4 0.975 -0.009 1.000 0.004

5 1.047 0.017 -0.024 -1.000

6 1.065 0.014 -0.012 -1.000
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Figure 3. Multidimensional Discrimination for a Two - Dimensional Space.
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